Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array

Half-wavelength plasmonic antennas tuned to resonance with molecular vibrational excitations have been demonstrated to enhance 2DIR signals by multiple orders of magnitude. We design doubly degenerate in-plane plasmonic normal modes of the symmetric trimer gap-antenna, which have orthogonal dipole moments excited by light of the appropriate polarization, to localize the enhanced field into the antenna’s gap. Vibrational excitations serve as sensitive probes of the plasmonic fields. 2DIR spectroscopy of thin molecular films indicates that molecules emitting enhanced signals experience an electric field with a direction independent of the excitation laser pulse polarization. Our results illustrate the trade-off between the large signal amplification in molecules close to the antenna surface by resonant plasmons, where the direction of the enhanced fields follows metal surface boundary conditions, and the associated limitations for the polarization-selective spectroscopy. The ultrafast quantum dynamics reported by the enhanced signals is not affected by its interaction with plasmonic excitation.
Authors: Bar Cohn, Ben Engelman, Adi Goldner, Lev Chuntonov

Read More